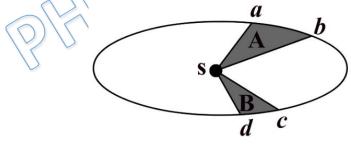


DPP – 5 (Gravitation)

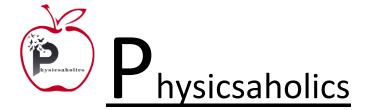

Video Solution on Website:-https://physicsaholics.com/home/courseDetails/99Video Solution on YouTube:-https://youtu.be/nuy5iKQ0tAUWritten Solution on Website:-https://physicsaholics.com/note/notesDetails/54

- Q 1. A satellite is orbiting round the earth at a height h above the surface of the earth. If this distance h is increased, the period of satellite will

 (a) decrease
 (b) increase
 (c) remain unaffected
 (d) become zero
- Q 2. The period of revolution of an earth's satellite close to the surface of earth is 60 minutes. The period of another earth's satellite is an orbit at a distance of three times earth's radius from its surface will be (in minutes)
 - (a) 90 (b) $90\sqrt{8}$ (c) 270 (d) 480
- Q 3. A satellite takes $\frac{1}{8}$ years to move round the earth in its permissible orbit of radius R. The period when it revolves round the earth in an orbit of radius '2R' is
 - (a) $\frac{1}{2\sqrt{2}}$ years
- (b) $2\sqrt{2}$ years

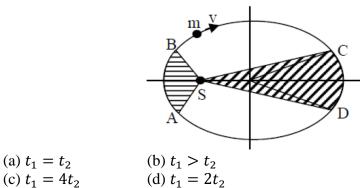
(c) 4 years

- (d) $\frac{1}{4}$ years
- Q 4. The figure shows the motion of a planet around the sun in an elliptical orbit with sun at the focus. The shaded areas A and B are also shown in the figure which can be assumed to be equal. If t_1 and t_2 represent the time for the planet to move from a to b and d to c respectively, then



(a) $t_1 < t_2$

(b) $t_1 > t_2$


(c) $t_1 = t_2$

(d) From the given information, the relation between t_1 and t_2 cannot be determined.

Q 5. The figure shows elliptical orbit of a planet m about the sun S. The shaded area SCD is twice the shaded area SAB. If t_1 is the time for the planet to move from C to D and t_2 is the time to move from A to B then:

Q 6. The figure shows a planet in elliptical orbit around the sun S. The kinetic energy of the planet will be maximum when the planet is at :

P₄

P₂

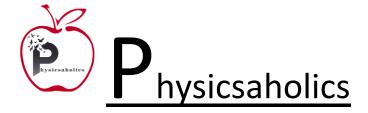
- (a) P_1 (c) P_3
- Q 7. A planet moves around the sun. At a given point P, it is closest from the sun at a distance d_1 and has a speed V_1 . At another point Q, when it is farthest from the sun at a distance d_2 , its speed will be
 - (a) $\frac{d_1^2 V_1}{d_2^2}$ (b) (c) $\frac{d_1 V_1}{d_2}$ (d)
- Q 8. Kepler's second law regarding constancy of aerial velocity of a planet is a consequence of the law of conservation of
 - (a) Energy (b) Angular momentum

(b) P_{2}

(d) P_2

- (c) Linear momentum (d) None of these
- Q 9. A planet moves around the sun in an elliptical orbit. When earth is closest from the sun, it is at a distance r having a speed v. When it is at a distance 4r from the sun its speed will be:
 - (a) 4v (b) $\frac{v}{4}$ (c) 2v (d) $\frac{v}{2}$
- Q 10. In a binary star system one star has thrice the mass of other. The stars rotate about their common center of mass then :
 - (a) Both stars have same angular momentum about common centre of mass

(b) Both stars have angular momentum of same magnitude about common center of mass


- (c) Both stars have same angular speeds
- (d) Both stars have same linear speeds
- Q 11. A binary star system consists of two stars A and B which have time period T_A and T_B , radius R_A and R_B and mass M_A and M_B . Then
 - (a) If $T_A > T_B$ then $R_A > R_B$ (b) If $T_A > T_B$ then $M_A > M_B$ (c) $\left(\frac{T_A}{T_B}\right)^2 = \left(\frac{R_A}{R_B}\right)^3$
 - (d) $T_A = T_B$
- Q 12. The two stars in a certain binary star system move in circular orbits The first star α moves in an orbit of radius 1×10^9 km. The other star β moves in an orbit of radius 5×10^8 km. What is the ratio of masses of star β to the star α ?
 - (b) 2 (a) 1 $(c) \frac{5}{13}$ $(d)\frac{3}{7}$
- Q 13. A planet revolves around sun whose mean distance is 1.588 times the mean distance between earth and sun. The revolution time of planet will be
 - (a) 1.25 years (b) 1.59 years (d) 2 years
 - (c) 0.89 years

Q 14. If the radius of earth's orbit is made 1/4, the duration of an year will become (b) 4 times (a) 8 times (d) $\frac{1}{4}$ times (c) $\frac{1}{2}$ times

A double star is a system of two stars of masses m and 2m, rotating about their center O 15. of mass only under their mutual gravitational attraction. If r is the separation between these two stars then their time period of rotation about their center of mass will be proportional to

(a)
$$r^{\frac{3}{2}}$$
 (b) r
(c) $m^{\frac{1}{2}}$ (d) $m^{-\frac{3}{2}}$

- Q 16. A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the center of earth in new orbit is 2 times that of the earlier orbit. The time period in the second orbit is
 - (a) 4.8 hours (b) $48\sqrt{2}$ hours
 - (d) $24\sqrt{2}$ hours (c) 24 hours

PRATISICS ATAOLARS PRATISICS ATAOLARS Answer Key

Q.1 b	Q.2 d	Q.3 a	Q.4 c	Q.5 d
Q.6 a	Q.7 c	Q.8 b	Q.9 b	Q.10 c
Q.11 d	Q.12 b	Q.13 d	Q.14 c	Q.15 a
Q.16 b				